8,894 research outputs found

    Metallic proximity effect in ballistic graphene with resonant scatterers

    Full text link
    We study the effect of resonant scatterers on the local density of states in a rectangular graphene setup with metallic leads. We find that the density of states in a vicinity of the Dirac point acquires a strong position dependence due to both metallic proximity effect and impurity scattering. This effect may prevent uniform gating of weakly-doped samples. We also demonstrate that even a single-atom impurity may essentially alter electronic states at low-doping on distances of the order of the sample size from the impurity.Comment: 9 pages, 2 figure

    Ballistic charge transport in chiral-symmetric few-layer graphene

    Full text link
    A transfer matrix approach to study ballistic charge transport in few-layer graphene with chiral-symmetric stacking configurations is developed. We demonstrate that the chiral symmetry justifies a non-Abelian gauge transformation at the spectral degeneracy point (zero energy). This transformation proves the equivalence of zero-energy transport properties of the multilayer to those of the system of uncoupled monolayers. Similar transformation can be applied in order to gauge away an arbitrary magnetic field, weak strain, and hopping disorder in the bulk of the sample. Finally, we calculate the full-counting statistics at arbitrary energy for different stacking configurations. The predicted gate-voltage dependence of conductance and noise can be measured in clean multilayer samples with generic metallic leads.Comment: 6 pages, 5 figures; EPL published versio

    Finite-temperature Bell test for quasiparticle entanglement in the Fermi sea

    Full text link
    We demonstrate that the Bell test cannot be realized at finite temperatures in the vast majority of electronic setups proposed previously for quantum entanglement generation. This fundamental difficulty is shown to originate in a finite probability of quasiparticle emission from Fermi-sea detectors. In order to overcome the feedback problem, we suggest a detection strategy, which takes advantage of a resonant coupling to the quasiparticle drains. Unlike other proposals, the designed Bell test provides a possibility to determine the critical temperature for entanglement production in the solid state.Comment: 6 pages, 3 figures, essentially revised and extended versio

    Korshunov instantons out of equilibrium

    Get PDF
    Zero-dimensional dissipative action possesses non-trivial minima known as Korshunov instantons. They have been known so far only for imaginary time representation that is limited to equilibrium systems. In this work we reconstruct and generalise Korshunov instantons using real-time Keldysh approach. This allows us to formulate the dissipative action theory for generic non-equilibrium conditions. Possible applications of the theory to transport in strongly biased quantum dots are discussed..Comment: 6 pages, 2 figure

    Diamagnetism of metallic nanoparticles as the result of strong spin-orbit interaction

    Get PDF
    The magnetic susceptibility of an ensemble of clean metallic nanoparticles is shown to change from paramagnetic to diamagnetic one with the onset of spin-orbit interaction. The effect is quantified on the basis of symmetry analysis with the help of the random matrix theory. In particular, the magnetic susceptibility is investigated as the function of symmetry breaking parameter representing magnetic flux in the crossover from symplectic to unitary and from orthogonal to unitary ensembles. Corresponding analytical and numerical results provide a qualitative explanation to the experimental data on diamagnetism of an ensemble of gold nanorods.Comment: 6 pages, 5 figures; extended versio

    Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)

    Get PDF
    High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in state-of-the-art and future gaseous detectors.Comment: 14 pages, 2 pictures. Presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, November 4-10, 2001, San Diego, USA. Submitted to IEEE Trans. Nucl. Sci (IEEE-TNS

    Magnon activation by hot electrons via non-quasiparticle states

    Get PDF
    We consider the situation when a femtosecond laser pulse creates a hot electron state in half-metallic ferromagnet (e. g. ferromagnetic semiconductor) on a picosecond timescale but do not act directly on localized spin system. We show that the energy and magnetic moment transfer from hot itinerant electrons to localized spins is facilitated by the so-called non-quasiparticle states, which are the scattering states of a magnon and spin-majority electron. The magnon distribution is described by a quantum kinetic equation that we derive using the Keldysh diagram technique. In a typical ferromagnetic semiconductor such as EuO magnons remain essentially in non-equilibrium on a scale of the order of microsecond after the laser pulse.Comment: 8 pages, 2 figure
    corecore